
/**
SupplySM.c Pseudocode

**/
/*----------------------------- Include Files -----------------------------*/
// Basic includes for a program using the Events and Services Framework
#include "ES_Configure.h"
#include "ES_Framework.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "inc/hw_gpio.h"
#include "driverlib/gpio.h"

#include "inc/hw_sysctl.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin_map.h" // Define PART_TM4C123GH6PM in project
#include "driverlib/gpio.h"
#include "inc/hw_timer.h"
#include "inc/hw_nvic.h"
/* include header files for this state machine as well as any machines at the
 next lower level in the hierarchy that are sub-machines to this machine
*/
#include "SupplySM.h"
#include "Location.h"
#include "MasterVehicle.h"
#include "LOCMaster.h"
#include "Location.h"
/*----------------------------- Module Defines ----------------------------*/
// define constants for the states for this machine
// and any other local defines

#define NORMAL_OPERATION
//#define TESTING_SUPPLY

#define ENTRY_STATE SUPPLY_WAITING
#define TWO_SEC 2000
#define TEN_MS 10
#define THIRTY_MS 30
#define THREE_SEC 3000
#define HALF_SEC 500
#define MAX_BALL_RECEIVED 4
#define COMPETITION_FULL_DUTY 75
#define CORRECTION_FULL_DUTY 55
#define NF 0x08
/*---------------------------- Module Functions ---------------------------*/
/* prototypes for private functions for this machine, things like during
 functions, entry & exit functions.They should be functions relevant to the
 behavior of this state machine
*/
static ES_Event DuringWaiting(ES_Event Event);
static ES_Event DuringMoveX(ES_Event Event);
static ES_Event DuringMoveY(ES_Event Event);
static ES_Event DuringPulseSupply(ES_Event Event);

/*---------------------------- Module Variables ---------------------------*/
// everybody needs a state variable, you may need others as well
static SupplyingState_t CurrentState;
static bool flag_10ms_timer = false;
static bool flag_30ms_timer = false;
static bool flag_3000ms_timer = false;

static int pulse_count = 0;
static bool supply_led_on = false;
static bool loaded_complete = false;
static uint32_t OneShotTimeout_10ms = 40000000*10/1000;
static uint32_t OneShotTimeout_30ms = 40000000*30/1000;
static int counter = 0;
static bool count_valid = true;

/***
 Function
 RunSupplySM
 ***/
ES_Event RunSupplySM(ES_Event CurrentEvent)
{
 initialize marktransition variable to false
 set nextstate to CurrentState

 switch (CurrentState)
 {
 case CurrentState is "Waiting State":
 set CurrentEvent to the result from running duringwaiting function
 if CurrentEvent is not ES_NO_EVENT
 if the eventtype of CurrentEvent is timeout and it is from STAGE_TIMER
 consume this event
 break
 if CurrentEvent is NO_BALL
 set nextstate to SUPPLY_MOVE_X
 set marktransition to true
 consume this event
 break

 case currentState is "MOVE IN X"
 Execute During function for "MOVE IN X" state. ES_ENTRY & ES_EXIT are
 processed here allow the lower level state machines to re-map
 or consume the event, we have entry function: start motor in x

 if CurrentEvent is not ES_NO_EVENT
 {
 switch the event type
 {
 if the eventtype of CurrentEvent is timeout and it is from STAGE_TIMER
 consume this event
 break
 if event is X_REACHED
 next state will be "MOVE IN Y"
 set marktransition to true
 break
 if event is CONSTRUCTION_END
 set next state to "Waiting State"
 set marktransition to true
 set return event to CONSTRUCTION_END event
 break
 }
 }
 break
 // repeat state pattern as required for other states

 case current state is "MOVE IN Y"
 Execute During function for "MOVE IN Y" state. ES_ENTRY & ES_EXIT are
 processed here allow the lower level state machines to re-map
 or consume the event. We have an entry functon that starts the motor in y direction.

 if CurrentEvent is not ES_NO_EVENT
 {
 switch the event type
 {
 if the event type is TIMEOUT and it is from STAGE_TIMER
 consume this event
 break

 if event type is TIMEOUT and it is from SUPPLY_RAMMING_TIMER
 stop the motor
 set location checker flag to true
 set next state to "PULSE SUPPLY"
 set mark transition to true
 consume event
 break

 if event type is "Y_REACHED"
 check if the location x is still correct
 if location x is correct
 set duty cycle of the motor to full speed
 set location checker flag to false
 run the motor in the Northward direction
 start SUPPLY_RAMMING_TIMER with time equals to two seconds

 else if location x is incorrect
 set duty cycle of the motor to correction speed
 set next state to "MOVE IN X"
 set mark transition to true
 break

 if event is CONSTRUCTION_END
 set next state to "Waiting State"
 set marktransition to true
 set return event to CONSTRUCTION_END event
 break
 }
 }
 break;

 case current state is PULSE_SUPPLY
 Execute During function for PULSE_SUPPLY. ES_ENTRY & ES_EXIT are
 processed here allow the lower level state machines to re-map
 or consume the event. We have entry function: start a 10ms timer,
 and write pulsing line high

 if CurrentEvent is not ES_NO_EVENT
 {
 switch (CurrentEvent.EventType)
 {
 case event type is SCORE_CHANGED
 consume this event
 break

 case the event type is TIMEOUT and it is from STAGE_TIMER
 consume this event
 break

 case event type is TIMEOUT and it is from SUPPLY_LED_TIMER
 if we have not finish loading
 if supply led is currently on
 set the supply led low

 else
 set the supply led high

 start SUPPLY_LED_TIMER with half a second timeout
 consume this event
 break

 case event type is TIMEOUT and it is from SUPPLY_TIMER
 if the current number of balls is more than maximum number of balls
 set loaded complete flag to true
 set next state to "Waiting State"
 set mark transition to true
 post LOADED_COMPLETE event to MasterVehicle
 consume this event

 else
 set pulse counter to 0
 set the IR LED high (PF0)
 start one shot timer (10ms)
 consume this event

 break

 case event is LOADED_COMPLETE
 set next state to "Waiting State"
 set marktransition to true
 set return event to LOADED_COMPLETE event
 break

 case event type is CONSTRUCTION_END
 set next state to "Waiting State"
 set marktransition to true
 set return event to CONSTRUCTION_END event
 break
 }
 }
 break

 }

 if we are making a state transition
 Execute exit function for current state
 Modify state variable
 Execute entry function for new state, using regular ES_ENTRY with no history

 return ReturnEvent
}

/***
 Function
 StartSupplySM
 ***/
void StartSupplySM (ES_Event CurrentEvent)
{
 if the entry event is a normal ES_ENTRY
 set the current state to entry state

 call the entry function (if any) for the ENTRY_STATE
}

TemplateState_t QueryTemplateSM (void)
{
 return CurrentState;
}

/***
 Function
 QuerySupplySM
 ***/
SupplyingState_t QuerySupplySM (void){
 return the current state
}

/***
 Private functions
 ***/
static ES_Event DuringWaiting(ES_Event Event)
{
 set ES_Event ReturnEvent to Event // assme no re-mapping or comsumption
 return ReturnEvent
}

static ES_Event DuringMoveInX(ES_Event Event)
{
 set ReturnEvent to Event, assuming no re-mapping or comsumption

 if the event is ES_ENTRY
 call move_X function with destination from get_Supply_location_x()
 else if the event is EXIT
 stop the motor

 return ReturnEvent
}

static ES_Event DuringMoveInY(ES_Event Event)
{
 set ReturnEvent to Event, assuming no re-mapping or comsumption

 if the event is ES_ENTRY
 call move_Y function with destination from get_Supply_location_y()
 set going to supply flag
 else if the event is EXIT
 stop the motor
 clear going to supply flag

 return ReturnEvent
}

static ES_Event DuringPulseSupply(ES_Event Event)
{
 set ReturnEvent to Event, assuming no re-mapping or comsumption

 if the event is ES_ENTRY
 init one shot interrupt response for SupplySM
 if current number of balls is less than maximum number of balls
 set loaded complete flag to false
 set pulse counter to 0
 start one shot 10ms timer
 start SUPPLY_LED_TIMER with timeout of half a second

 else if the event is EXIT
 set IR LED low (PF0)
 set construction LED high (PF3)

 return ReturnEvent
}

void InitOneShotInt_Supply(void){
 start by enabling the clock to the timer (Wide Timer 4)
 kill a few cycles to let the clock get going
 make sure that timer (Timer B) is disabled before configuring

 set it up in 32bit wide (individual, not concatenated) mode
 the constant name derives from the 16/32 bit timer, but this is a 32/64
 bit timer so we are setting the 32bit mode

 set up timer B in 1-shot mode so that it disables timer on timeouts
 first mask off the TAMR field (bits 0:1) then set the value for 1-shot mode = 0x01

 set timeout to 10ms
 enable a local timeout interrupt. TBTOIM = bit 8
 enable the Timer B in Wide Timer 0 interrupt in the NVIC EN3 at bit 7
 make sure interrupts are enabled globally

 now kick the timer off by enabling it and enabling the timer to
 stall while stopped by the debugger. TAEN = Bit0, TASTALL = bit1
}

void StartOneShot_Supply_10ms(void){
 make sure that timer (Timer B) is disabled before configuring
 set timeout to 10ms
 make sure interrupts are enabled globally
 now kick the timer off by enabling it and enabling the timer to
 stall while stopped by the debugger. TAEN = Bit0, TASTALL = bit1
}

void StartOneShot_Supply_30ms(void){
 make sure that timer (Timer B) is disabled before configuring
 set timeout to 30ms
 make sure interrupts are enabled globally
 now kick the timer off by enabling it and enabling the timer to
 stall while stopped by the debugger. TAEN = Bit0, TASTALL = bit1
}

void OneShotIntResponse_Supply(void){
 start by clearing the source of the interrupt

 if pulse counter is less than 20
 if pulse counter is an even number

 set IR LED high
 increment pulse counter by 1
 start 10ms one shot timer

 else
 set IR LED low
 start 30ms one shot timer
 increment pulse counter by 1

 if pulse counter is 20
 start SUPPLY_TIMER with timeout of 3 seconds
 increment number of ball by 1

}
	

