
StageSM pseudo code

/*----------------------------- Include Files -----------------------------*/
// Basic includes for a program using the Events and Services Framework
#include "ES_Configure.h"
#include "ES_Framework.h"
#include "StageSM.h"
#include "Location.h"
#include "MasterVehicle.h"
#include "LOCMaster.h"

/*---------------------------- Module Functions ---------------------------*/

/*---------------------------- Module Variables ---------------------------*/
set up a variable to store the state

set up variables to store destinations
/*------------------------------ Module Code ------------------------------*/
/**

**/
ES_Event RunStageSM(ES_Event CurrentEvent)
{
 default to not make a transition
 default to normal entry to new state
 default to not consume events

 switch (CurrentState)
 {
 case STAGE_WAITING :
 execute during function for "STAGE_WAITING"

 If an event is active
 {
 switch EventType
 {
 case STAGE_ACTIVE :
 create a local variable to store the destination index
 (for our array of coordinates), dest_index
 query the active stage and update dest_index
 if the dest_index indicates a valid location (1,2,or 3)
 update the current X and Y destination that we are going to
 set NextState to STAGE_MOVE_Y, start with first
 adjusting current robot Y position
 mark that we are making a transition
 consume event

 default:
 break;
 }
 }
 break;

 case STAGE_MOVE_Y :
 execute during function "STAGE_MOVE_Y"

 If an event is active
 {
 switch Event Type
 {
 case SHOOT_ACTIVE_4://all the stations are active for shooting

 set next state to STAGE_WAITING
 mark that we are making a transition
 do not consum ethis event
 break;

 case Y_REACHED :
 set NextState to STAGE_MOVE_X to start moving in X direction
 mark that we are making transition
 consume the event
 break;

 case CONSTRUCTION_END:
 set the NextState to be STAGE_WAITING
 mark that we are making a transition
 do not consum this event
 break;
 default:
 break;
 }
 }
 break;

 case STAGE_MOVE_X :
 execute during function for "STAGE_MOVE_X"

 If an event is active
 {
 switch Event Type
 {
 case SHOOT_ACTIVE_4:
 set NextState to STAGE_WAITING
 mark that we are taking a transition
 do not consume the event
 break;

 case X_REACHED:
 if our Y location is still good
 set NextState to STAGE_VERIFICATION indicating that we are ready for
handshake
 else
 set NextState to STAGE_MOVE_Y to adjust Y position again

 mark that we are making a transition
 consume the event
 break;

 case CONSTRUCTION_END:
 set NextState to STAGE_WAITING
 mark that we are taking a transition
 do no consume the event
 break;

 default:
 break;
 }
 }
 break;

 case STAGE_VERIFICATION :
 execute during function for "STAGE_VERIFICATION"
 If an event is active

 {
 switch Event Type
 {
 case ES_TIMEOUT:
 if the stage_timer times out,
 indicating we got stuck during the handshake
 set NextState to be STAGE_WAITING
 mark that we are making a transition
 do not consume the event
 post a "restart verify frequency" event to the LOCMaster
 break

 case FINISHED_STAGING:
 set NextState to STAGE_WAITING
 mark that we are taking a transition
 do not consume the event
 break;

 case CONSTRUCTION_END:
 set NextState to STAGE_WAITING
 mark that we are taking a transition
 do not consume the event
 break;

 default:
 break;
 }
 }
 break;

 default:
 break;
 }

 If we are making a state transition
 {
 Execute exit function for current state
 Modify state variable
 Execute entry function for new state
 }

 return(ReturnEvent);
}
/***/
void StartStageSM (ES_Event CurrentEvent)
{

 set the first state to the entry state
 run the state machine with an entry event
}

/***/
StagingState_t QueryStageSM (void)
{
 return(CurrentState);
}

/**/

static ES_Event DuringWaiting(ES_Event Event)
{
 ES_Event ReturnEvent = Event; // assme no re-mapping or comsumption
 return(ReturnEvent);
}

static ES_Event DuringMoveY(ES_Event Event)
{
 ES_Event ReturnEvent = Event; // assme no re-mapping or comsumption

 // process ES_ENTRY, ES_ENTRY_HISTORY & ES_EXIT events
 if we have ES_ENTRY or ES_ENTRY_HISTORY
 move the Y to the current destination
 else if we have ES_EXIT
 stop the motor

 return(ReturnEvent);
}

static ES_Event DuringMoveX(ES_Event Event)
{
 ES_Event ReturnEvent = Event; // assme no re-mapping or comsumption

 // process ES_ENTRY, ES_ENTRY_HISTORY & ES_EXIT events
 if we have ES_ENTRY or ES_ENTRY_HISTORY
 move the X to the current destination
 else if we have ES_EXIT
 stop the motor

 return(ReturnEvent);
}

static ES_Event DuringFreqMeasurement(ES_Event Event)
 {
 ES_Event ReturnEvent = Event; // assme no re-mapping or comsumption

 // process ES_ENTRY, ES_ENTRY_HISTORY & ES_EXIT events
 if we have ES_ENTRY or ES_ENTRY_HISTORY
 post an "ARRIVED_AT_STAGING" event to LOCMaster
 start a 3 sec "STAGE_TIMER" (if we do not finish handshaking during this time, we will
restart the handshaking

 return(ReturnEvent);
}

static ES_Event DuringWaitingForResponse(ES_Event Event)
 {
 ES_Event ReturnEvent = Event; // assme no re-mapping or comsumption
 return(ReturnEvent);
}
	

