mastervehicle_pseudocode.txt
Author: Wyatt Smith

Editor: George Huang
/K ok sk sk ok sk ok sk o ok sk ok ok ok ok sk s ok sk ok ok ok ok sk o ok ok ok sk o sk ok ok sk ok sk o ok sk ok ok sk ok sk o ok sk ok ok sk e ok sk ok ko ok sk ke ok sk ok ko ok sk ok ok sk ok ok o/

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

"ES_Configure.h"
"ES_Framework.h"
"MasterVehicle.h"
"ES_DeferRecall.h"
"inc/hw_memmap.h"
"inc/hw_types.h"
"inc/hw_gpio.h"
"inc/hw_sysctl.h"
"driverlib/sysctl.h"
"driverlib/pin_map.h"
"driverlib/gpio.h"
"inc/hw_timer.h"
"inc/hw_nvic.h"
"StageSM.h"
"ShootSM.h"
"SupplySM.h"
"Location.h"
"OwnPWM.h"
"LOCMaster.h"
"Servo_Control.h"
"Ultrasonic.h"

/R Rk ok R kKRR KRRk S ome defines and variables declaration® ¥kt kok ok ok /

set up a CurrentState variable for state machine
set up a Priority
set up a team variable to identify whether we are red or green

set up variables to store destinations (update when we have new active locations)
set up a variable to store how many balls we still have, NUM_BALL_AVAILABLE

set up variables to store the scores

set up variables storing ultrasonic coordinate information (X and Y) for

all staging, shooting, and supplying locations.

YA L Module Code ----------ccmccccmcc e &7

/AR AR R KRS KR KSR S KR S K KK S KR SRH KK S KRS H SR K SR KRS S K K SR KK Sk SR Kk o/

bool InitMasterVehicleSM (uint8_t Priority)

{

save our priority
Initialize port and pin needed for LEDs/IR Emitters/team selection switch

Initialize location module

Initialize PWM for Servo
Start the Master State machine(this module) with ES_ENTRY
Initialize NUM_BALL_AVAILABLE with 4 balls

}

/AR AR R KRS KR KSR S KR SR K KK S KR S K KK S KR SKH SR K S KK SROK S K K SR KK Sk SR K o/

bool PostMasterVehicleSM(ES_Event ThisEvent)

{

post event to this service by calling the priority of this service

}

/***/

ES_Event RunMasterVehicleSM(ES_Event CurrentEvent)

{
{

switch (CurrentState)

case INIT_STATE

if an event is active (not ES_NO_EVENT)

{
switch Event Type
{
case CONSTRUCTION_START:
set NextState to IDLE_STATE
set MakeTransition to true
consume event (set ReturnEvent type to ES_NO_EVENT)
break;
default:
break;
¥
}
break;

case IDLE_STATE

if an event is active (not ES_NO_EVENT)
{
switch Event Type
{
case STAGE_ACTIVE:
update game status to reflect current active staging area
set NextState to STAGING_STATE
set MakeTransition to true
consume event (set ReturnEvent type to ES_NO_EVENT)
break;

case SHOOT_ACTIVE:
update game status to reflect current active shooting area
set NextState to SHOOTING_STATE
set MakeTransition to true
consume event (set ReturnEvent type to ES_NO_EVENT)
break;

case SHOOT_ACTIVE_4: //If event is shoot active (for last 18 seconds)
update game status to reflect current active staging area
set NextState to SHOOTING_STATE
set MakeTransition to true
consume event (set ReturnEvent type to ES_NO_EVENT)
break;

case NO_BALL:
update game status to reflect current active staging area
set NextState to SUPPLYING_STATE
set MakeTransition to true
consume event (set ReturnEvent type to ES_NO_EVENT)
break;

case CONSTRUCTION_END:
set next state to init state (we want to stop everything)
set MakeTransition to true
consume event (set ReturnEvent type to ES_NO_EVENT)

break;

break;

default:

break;

case STAGING_STATE

if an event is active (not ES_NO_EVENT)

{

switch Event Type

{

break;

case ES_TIMEOUT:

set NextState to IDLE_STATE

set MakeTransition to true

consume event (set ReturnEvent type to ES_NO_EVENT)
check if there is any active event on our way out
break;

case SHOOT_ACTIVE_4:

if event is shoot active (during the last 18 seconds)
set NextState to IDLE_STATE

set MakeTransition to true

consume event (set ReturnEvent type to ES_NO_EVENT)
check if there is any active event on our way out
break;

case FINISHED_STAGING: //if we successfully verify frequency

set NextState to IDLE_STATE

set MakeTransition to true

consume event (set ReturnEvent type to ES_NO_EVENT)
break;

case CONSTRUCTION_END: //If event is construction end

set NextState to INIT_STATE

set MakeTransition to true

consume event (set ReturnEvent type to ES_NO_EVENT)
break;

default:
break;

case SHOOTING_STATE

if an event is active (not ES_NO_EVENT)
{
switch Event Type

{

case ES_TIMEOUT: (If event is 20 SECOND SHOOTING TIMEOUT)
set NextState to IDLE_STATE
set MakeTransition to true
consume event (set ReturnEvent type to ES_NO_EVENT)
check if there is any active event on our way out
break;

case SCORE_CHANGED:
set NextState to IDLE_STATE
set MakeTransition to true
consume event (set ReturnEvent type to ES_NO_EVENT)
check if there is any active event on our way out
break;

case NO_BALL:
set NextState to SUPPLYING_STATE
set MakeTransition to true
consume event (set ReturnEvent type to ES_NO_EVENT)
break;

case CONSTRUCTION_END:
set NextState to INIT_STATE
set MakeTransition to true
consume event (set ReturnEvent type to ES_NO_EVENT)
break;

default:
break;
¥
by

break;
case SUPPLYING_STATE

if an event is active (not ES_NO_EVENT)
{
switch Event Type
{
case LOADED_COMPLETE:
set NextState to IDLE_STATE
set MakeTransition to true
consume event (set ReturnEvent type to ES_NO_EVENT)
check if there is any active event on our way out
break;

case CONSTRUCTION_END:
set NextState to INIT_STATE
set MakeTransition to true
consume event (set ReturnEvent type to ES_NO_EVENT)
check if there is any active event on our way out
break;

default:
break;

}

}
break;
default:
break;
¥
if we are making a state transition
{
set CurrentEvent type to ES_EXIT;
call run function for SM with CurrentEvent, to execute exit function of current state
update the state
call run function again, with EntryEventKind (defaults to ES_ENTRY),
to execute entry function for new state
¥

//return ReturnEvent

/AR AR R SRS KR KSR KR S K KK S KR SRH KK S KR SRH SR K S KR SROH S K K SR KK Sk SR Kk o/

void StartMasterVehicleSM (ES_Event CurrentEvent)

{
set CurrentState to INIT_STATE
call SM run function with CurrentState to init lower level state machines

/* This function return the current state of this state machine */
MasterVehicleState_t QueryMasterVehicleSM (void)

{
}

/A AR R SR KR SK KK S KR SR K KK S KSR S KK S K KK S KR SR K S KK SR KSR K SR SR KRR oKk /

return the CurrentState

static ES_Event DuringInitState(ES_Event Event)
{

// set ReturnEvent to Event;

if event type is ES_ENTRY or ES_ENTRY_HISTORY

{
read team input and set team collor
make sure construction led is off
make sure motor is not running when we start the game
}
else if event type is ES_EXIT
{
Turn on construction LED (when we exit init state, that means game is on)
}
else{
(No lower state machine)
}

return ReturnEvent

static ES_Event DuringlIdleState(ES_Event Event)
{

// set ReturnEvent to Event;

if event type is ES_ENTRY or ES_ENTRY_HISTORY
{

}
else if event type is ES_EXIT

{
}

else{
(No lower state machine)

(nothing to do here)

(nothing to do here)

}

return ReturnEvent

}

static ES_Event DuringStagingState(ES_Event Event)
{

// set ReturnEvent to Event;

if event type is ES_ENTRY or ES_ENTRY_HISTORY
{

}
else if event type is ES_EXIT

{

post STAGE_ACTIVE to StageSM

call StageSM Run function to execute exit
stop the 2s staging limit timer, STAGE_TIMER

}

else{
call StageSM run function with Event to pass it down

}

return ReturnEvent

}

static ES_Event DuringShootingState(ES_Event Event)
{

// set ReturnEvent to Event;

if event type is ES_ENTRY or ES_ENTRY_HISTORY

{
post SHOOT_ACTIVE to ShootSM by calling ShootSM Start function
start 20s timer limit for shooting
}
else if event type is ES_EXIT
{
call ShootSM Run function to execute exit
}
else{
call StageSM run function with Event to pass it down
}

return ReturnEvent

static ES_Event DuringSupplyingState(ES_Event Event)

{
// set ReturnEvent to Event;
if event type is ES_ENTRY or ES_ENTRY_HISTORY
{
post NO_BALL to SupplySM by calling SupplySM Start function
}
else if event type is ES_EXIT
{
call SupplySM Run function to execute exit
check which event is currently active at exit
}
else{
call SupplySM run function with Event to pass it down
}
return ReturnEvent
}

static void Init_LED Port(){
Initialize Ports B, E, F and correct pins for leds and team selection switch
Initialize IR LED (for resupply)

}

/* This function reads value from PBO and sets team accordingly */
static void Team_Selection(){
if team selection switch pin is low
set team to RED

else if switch pin is high
set team to GREEN

if team is red
light up red LED

else if team is green
light up green LED

}

static void Set_Construction_ LED(){
turn on construction LED

}

static void Clear_Construction_ LED(){
turn off construction LED

}

static void update_Status(){
set status to status from LOC master module

}

int get_Team(void){
return team, green or red

}
uint32_t get_Supply location_x(){
if team is red

{
}

return X coordinate of the red supply station

else{
return X coordinate of the green supply station
}
}

uint32_t get_Supply location_y(){
if team is red

{
return Y coordinate of the red supply station
}
else
{
return Y coordinate of the green supply station
}

}

/* The folowing functions return the Lloations of stage and shoot areas for red and green */
uint32_t get Stage Green_ X(uint8_t index){

return X coordinate of this stage area

}

uint32_t get Stage Green_Y(uint8_t index){
return Y coordinate of this stage area

}

uint32_t get Stage Red X(uint8_t index){
return X coordinate of this stage area

}

uint32_t get Stage Red Y(uint8_t index){
return Y coordinate of this stage area

}

uint32_t get Shoot Green_ X(uint8_t index){
return X coordinate of this shooting area

}

uint32_t get Shoot Green_Y(uint8_t index){
return Y coordinate of this shooting area

}

uint32_t get Shoot Red X(uint8_t index){
return X coordinate of this shooting area

}

uint32_t get Shoot Red Y(uint8_t index){
return Y coordinate of this shooting area

}

int get_num_ball(void){
return NUM_BALL_AVAILABLE, which gets updated by shooting and supplying
}

/* This function 1increases the current number of balls by 1*/
void increment_num_ball(void){

increase NUM_BALL_AVAILABLE by 1
}

/* This function decreases the current number of balls by 1*/
void decrement_num_ball(void){
decrease NUM_BALL_AVAILABLE by 1

}

/* This function updates the score variable using the inputs */
void update_score(uint8_t red_input, uint8_ t green_input){
write the corresponding input to the corresponding score

}

/* This function returns the current red score */
uint8_t get _red_score(void){

return red_score, which is updated by LOC
}

/* This function returns the current green score */
uint8_t get_green_score(void){

return green_score, which is updated by LOC
}

