
Cleaned up by Huajian Huang on 16:36, March 11th, 2017
Author: Huajin George Huang

#include "ES_Configure.h"
#include "ES_Framework.h"
#include "LOCMaster.h"
#include "ES_DeferRecall.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "inc/hw_gpio.h"
#include "inc/hw_sysctl.h"
#include "driverlib/sysctl.h"
#include "driverlib/pin_map.h" // Define PART_TM4C123GH6PM in project
#include "driverlib/gpio.h"
#include "inc/hw_timer.h"
#include "inc/hw_ssi.h"
#include "inc/hw_nvic.h"
#include "OwnPWM.h"
#include "MasterVehicle.h"

/*----------------------------- Module Defines ----------------------------*/

/*---------------------------- Module Functions ---------------------------*/

/*---------------------------- Module Variables ---------------------------*/

set up a variable to store state

set up a variable to store Priority;

set up variables to store data bytes from SPI, and important parameters extracted

set up flags to assist handshake during staging

set up variables for input capture and obtaining the frequency

define the frequency and frequency code table, and a stableCounter

define some variables to store active locations

set up some variables to store the scores

initialize a event to carry information around

/*------------------------------ Module Code ------------------------------*/
/**

**/
bool InitLOCMasterSM (uint8_t Priority)
{
 save our priority
 Init SPI
 init input capture for the Hall sensor
 start the LOCMasterSM with ES_ENTRY
 start a timer for getting game status, GET_STATUS_TIMER

 return true
}

/**

**/
bool PostLOCMasterSM(ES_Event ThisEvent)
{
 return call post with the priority of this service
}

/**

**/
ES_Event RunLOCMasterSM(ES_Event CurrentEvent)
{
 default to not make a transition
 update the state
 default to normal entry to new state
 assume no error for the ReturnEvent

 switch (CurrentState)
 {

 case WAITING :

 // This state is like a neutral transition state
 //(1) normally wait for timer and keep querying game status
 //(2) when asked to do staging area stuff, move to the corresponding states

 //In this state, I want to keep querying the game status regularly
 execute during function
 //process any events
 If an event is active
 {
 switch Event Type
 {
 case ES_TIMEOUT:
 If event is "The GET_STATUS_TIMER" timeout{

 set NextState to GAME_STATUS_SENDING_TO_LOC
 mark that we are taking a transition
 Post the same event to self
 consume the event
 }
 break;

 case ARRIVED_AT_STAGING:

 set NextState to SENDING_TO_LOC_AT_STAGING
 mark that we are taking a transition
 consume event
 break;

 default:
 break;

 }
 } // end if "No event"

 else // Current Event is now ES_NO_EVENT. Correction 2/20/17 provided by
Prof.Ed
 { //Probably means that CurrentEvent was consumed by lower level
 return CurrentEvent as ReturnEvent
 }
 break;

 case GAME_STATUS_SENDING_TO_LOC :
 execute during function
 If an event is active
 {
 switch Event Type
 {
 case ES_TIMEOUT:
 If event is GET_STATUS timer timeout
 //time to query for current game status
 write the "GET_STATUS_COMMAND" and followed by 4 bytes of 0x00
 //Pump them into FIFO buffer, when they are all out, we get EOT interrupt
 enable the EOT interrupt
 set NextState to GAME_STATUS_RECEIVING_FROM_LOC
 mark that we are taking a transition
 consume event
 }
 break;

 case ARRIVED_AT_STAGING:
 post this event back to this very service (needs to be
handled, just not now)
 break;

 default:
 break;
 }
 } //end if "no event"
 else // Current Event is now ES_NO_EVENT. Correction 2/20/17
 { //Probably means that CurrentEvent was consumed by lower level
 return CurrentEvent ReturnEvent
 }
 break;
 // repeat state pattern as required for other states

 case GAME_STATUS_RECEIVING_FROM_LOC :
 execute during function
 If an event is active
 {
 switch Event Type
 {
 case ES_EOT: //If event is end of transmission of 5 bytes, provided by EOT
interrupt

 if the second byte of data is 0xff (meaning this is legit data){ //all of
the useful commands start with 0xff
 assemble the status bytes
 }

 //extract the bit corresponding to contruction start and see if it changes
to "construction starts"
 if the game status bit changes from "waiting to start" to "construction
active"{
 post "CONSTRUCTION_START" to MasterVehicle
 }

 if the game status bit changes from "construction active" to "waiting to
start"{
 post "CONSTRUCTION_END" to MasterVehicle
 }

 //updating current score
 //depending on the team, red or green
 update the current score
 if the current score if more than the previous score{
 post a "SCORE_CHANGED" event to MasterVehicle
 }
 update previous score

 update the green and red score

 if the game is active
 //depending on the team, red or green
 update the current active stage location
 if we have an valid and active staging location and it is different from
the previous one{
 post "STAGE_ACTIVE" to MasterVehicle
 }
 update the previous active stage location

 update the current active shooting location
 if we have an valid and active shooting location and it is different
from the previous one{

 if all shooting locations are active{
 post "SHOOT_ACTIVE_4" to MasterVehicle
 }
 else{
 post "STAGE_ACTIVE" to MasterVehicle
 }
 }
 update the previous active shooting location

 }//end if "data is useful/legit

 update previous StatusBytes after this comparison

 start the timer for the next game status query
 set NextState to WAITING
 mark that we are taking a transition
 consume event
 break;
 // repeat cases as required for relevant events

 case ARRIVED_AT_STAGING: //mainly used when we are stuck, at
we are moving around a bit and restarting
 post this event back to this very service (we need to
process it, just not now)
 break;

 default:
 break;
 }
 }// end if "no event"
 else // Current Event is now ES_NO_EVENT. Correction 2/20/17
 { //Probably means that CurrentEvent was consumed by lower level
 return CurrentEvent as ReturnEvent
 }
 break;

 case SENDING_TO_LOC_AT_STAGING :

 execute during function
 If an event is active
 {
 switch Event Type
 {

 case SEND_FIRST_REPORT: //if we are asked to send the first report
 clear the active location first, we are at a new round

 clear all the flags for previous report sent and ack, might be repeated, but
better safe than sorry

 if we sent a report within 200ms
 {

 set NextState to WAITING_FOR_200MS_TIMEOUT
 mark that we are taking a transition
 consume event
 }

 else if we have a freq to use that is yet to be consumed
 //write the frequency to LOC

 put that frequency in the form of the report style,
and send the whole byte in SPI
 send four 0x00 bytes following that

 enable the EOT interrupt

 raised the flag for we have sent 1st report already

 raise the flag, indicating that we have sent a report,
do not send again for another 200 ms

 start a 200 ms timer to clear this
FlagSentReprotWithin200ms

 set NextState to RECEIVING_FROM_LOC_AT_STAGING
 mark that we are taking a transitio

 consume event
 }//end the within 200ms check
 break;

 case SEND_SECOND_REPORT: //if we are asked to send the second report

 if we sent a report within 200ms
 {
 set NextState to WAITING_FOR_200MS_TIMEOUT
 mark that we are taking a transition
 consume event
 }
 else if we have a freq to use

 put that frequency in the form of the report style, and send the whole byte
in SPI
 send four 0x00 bytes following that

 enable the EOT interrupt

 raised the flag for we have sent 1st report already

 raise the flag, indicating that we have sent a report, do not send again
for another 200 ms

 start a 200 ms timer to clear this FlagSentReprotWithin200ms

 set NextState to RECEIVING_FROM_LOC_AT_STAGING
 ark that we are taking a transition
 consume event
 }//end the within 200ms check
 break;

 case GO_QUERY_REPORT_RESPONSE : //Asked to go query report response
 write the query for report response command to LOC,followed
by 4 bytes of 0x00
 enable the EOT interrupt

 set NextState to RECEIVING_FROM_LOC_AT_STAGING
 mark that we are taking a transition
 consume event
 break;

 default:
 break;
 }

 }// end if "not no-event"
 else // Current Event is now ES_NO_EVENT. Correction 2/20/17
 { //Probably means that CurrentEvent was consumed by lower level
 return CurrentEvent as ReturnEvent
 }
 break;

 case RECEIVING_FROM_LOC_AT_STAGING :
 execute during function

 //process any events
 If an event is active
 {
 switch Event Type
 {

 case RESTART_VERIFY_FREQ://we are stuck, restart the process
 set NextState to WAITING;
 mark that we are making a transition
 consume event
 break;

 case GO_QUERY_REPORT_RESPONSE:

 write the query for report response command to
LOC,followed by 4 bytes of 0x00
 enable the EOT interrupt
 enable the EOT interrupt

 break;

 case ES_EOT : //If event is ES_EOT, END OF FIVE BYTES, not one, FIVE!

 if we have sent the first report and not acknowledged{
 Extract to see if the response is ready
 if response is ready
 consume the frequency once the reseponse is ready
and our frequency is processed

 if our report is ACKed{
 update the flags to encode our current step: sent 1st report, ACKed
1st report, not sent 2nd report, not ACKed 2nd report
 set NextState to SENDING_TO_LOC_AT_STAGING
 mark that we are making a transition
 consume the event

 }
 else{ //we get NACK or Inactive, first report failed

 update the flags to encode our current step, we go back to the
beginning, sent nothing, ACKed nothing
 consume the frequency
 set NextState to SENDING_TO_LOC_AT_STAGING;
 mark that we are making a transition
 consume the event
 }

 }// ends the "checking response ready" if statement
 else{//the reponse code is not ready, keep querying
 set NextState to SENDING_TO_LOC_AT_STAGING
 //keep querying until we get response ready byte
 post a "GO_QUERY_REPORT_RESPONSE" to ourself, LOCMaster
 mark that we are making a transition
 consume event
 }
 }
 //end of after first report and dealing with first ACK

 //now deal with after having one successful report

 if we sent the 2nd report and have not ACKed the 2nd report{
 //Extract to see if the response is ready
 if the response is ready{
 consume the frequency once the reseponse is ready
and our frequency is processed

 if the report is ACKed{ //data4 is RS byte, ACK is 0x00
 update the flags to encode our current step: sent 1st and 2nd report,
ACKed 1st and 2nd report
 consume the frequency
 obtain ActiveLocation
 set NextState to WAITING;
 EventToPost.EventType=FINISHED_STAGING;
 post "FINISHED_STAGING" to MasterVehicle
 start the timer for the next game status query
otherwise it would not get triggered
 mark that we are making a transition
 consume event
 }
 else{ //we get NACK or Inactive
 clear all the sent and ACKed flags
 set NextState to SENDING_TO_LOC_AT_STAGING;
 consume the frequency
 mark that we are making a transition
 consume event
 }

 }
 else{//the reponse code is not ready, keep querying
 set NextState to SENDING_TO_LOC_AT_STAGING
 //keep querying until we get response ready byte
 post a "GO_QUERY_REPORT_RESPONSE" to ourself, LOCMaster
 mark that we are making a transition
 consume event
 }
 } //end of after first report and dealing with first ACK

 break;
 // repeat cases as required for relevant events
 default:
 break;
 }
 } // end if "no event"
 else // Current Event is now ES_NO_EVENT. Correction 2/20/17
 { //Probably means that CurrentEvent was consumed by lower level
 return CurrentEvent as ReturnEvent
 }
 break;

 case WAITING_FOR_200MS_TIMEOUT :
 execute during function

 //process any events
 If an event is active
 {
 switch Event Type
 {

 case RESTART_VERIFY_FREQ://restart when we are stuck

 set NextState to WAITING;
 mark that we are making a transition
 consume event
 break;

 case ES_TIMEOUT :
 If event is the 200ms timeout{
 clear the flag that we went a report within 200ms
 if we failed the previous handshake and all sent/ACKed
flags are low{//failed on any attempt, restarting

 set NextState = SENDING_TO_LOC_AT_STAGING
 consume the frequency and let input capture post
 mark that we are taking a transition
 consume event
 }

 else if we sent and ACKed 1st report{//sent one report,
ACKed first report, sent to this state when attempting to send the second report

 set NextState to SENDING_TO_LOC_AT_STAGING
 consume the frequency and let input capture post
 mark that we are taking a transition
 consume event
 }

 }//end checking the timeout is from the 200ms report timer
 break; //break the timeout case

 default:
 break;//break default, for switching event type
 }//end switch event type

 } //end if "not no event"
 else // Current Event is now ES_NO_EVENT. Correction 2/20/17
 { //Probably means that CurrentEvent was consumed by lower level
 return CurrentEvent as ReturnEvent // in that case update ReturnEvent too.
 }
 break; //break the waiting 200ms state

 default:
 break;//break default, for switching states
 } //end switch of states

If we are making a state transition
 {
 Execute exit function for current state
 Modify state variable
 Execute entry function for new state

 }

 return(ReturnEvent);
}
/**

**/

void StartLOCMasterSM (ES_Event CurrentEvent)
{

 set our initial state is WAITING
 run the state machine

 return true;
}

/***
 private functions
 ***/

static ES_Event DuringWaitingState(ES_Event Event)
{
 assume no re-mapping or comsumption for the ReturnEvent

 // process ES_ENTRY, ES_ENTRY_HISTORY & ES_EXIT events
 if we have ES_ENTRY or ES_ENTRY_HISTORY
 {
 set all the flags related to handshaking at staging area to default/intial value

 }
 else if we have ES_EXIT
 {}
 else
 {}
 return ReturnEvent
}

static ES_Event During_GAME_STATUS_SENDING_TO_LOC_State(ES_Event Event)
{
 assume no re-mapping or comsumption for ReturnEvent

 // process ES_ENTRY, ES_ENTRY_HISTORY & ES_EXIT events
 if we have ES_ENTRY or ES_ENTRY_HISTORY
 {}
 else if we have ES_EXIT
 {}
 else
 {}

 return ReturnEvent
}

static ES_Event During_GAME_STATUS_RECEIVING_FROM_LOC_State(ES_Event Event)
{
 assume no re-mapping or comsumption for ReturnEvent

 // process ES_ENTRY, ES_ENTRY_HISTORY & ES_EXIT events
 if we have ES_ENTRY or ES_ENTRY_HISTORY
 {}
 else if we have ES_EXIT
 {}
 else
 {}

 return ReturnEvent
}

static ES_Event During_SENDING_TO_LOC_AT_STAGING_State(ES_Event Event)
{
 assume no re-mapping or comsumption for ReturnEvent

 // process ES_ENTRY, ES_ENTRY_HISTORY & ES_EXIT events
 if we have ES_ENTRY or ES_ENTRY_HISTORY
 {}
 else if we have ES_EXIT
 {}
 else
 {}

 return ReturnEvent
}

static ES_Event During_RECEIVING_FROM_LOC_AT_STAGING_State(ES_Event Event)
{
 assume no re-mapping or comsumption for ReturnEvent

 // process ES_ENTRY, ES_ENTRY_HISTORY & ES_EXIT events
 if we have ES_ENTRY or ES_ENTRY_HISTORY
 {}
 else if we have ES_EXIT
 {}
 else
 {}

 return ReturnEvent
}

static ES_Event DuringWait200msState(ES_Event Event)
{
 assume no re-mapping or comsumption for ReturnEvent

 // process ES_ENTRY, ES_ENTRY_HISTORY & ES_EXIT events
 if we have ES_ENTRY or ES_ENTRY_HISTORY
 {}
 else if we have ES_EXIT
 {}
 else
 {}

 return ReturnEvent
}
/**SPI
FUNCTIONS**/

void SPI_Init(void){
 Enable the clock to the GPIO Port (we are going to use Port A)
 Enable clock to SSI - set to SSI Module 0
 Wait for GPIO Port to be ready by killing a few cycles

 Program the GPIO to use the alternate functions on the SSI pins PA2,3,4,5
 Set Mux position in GPIOPCTL to select the SSI use of the pins
 Program the port lines for digital I/O
 Program the required data directions on the port line

 program the pull-up on the clock line
 Wait for the SSI0 to be ready
 Make sure that the SSI is disabled before programming mode bits
 select Master mode and TXRES indicating EOT
 Configure the SSI clock source to the system clock
 Configure the clock pre-scaler: here we want CPSDVSR = 80 , 1+SCR = 61
 Configure clock rate (SCR) - 0, phase (SPH)- 1 and polarity (SPO)- 1 ,
 mode (FRF) - freescale(0) and datasize (DSS) - 8 bit

 Locally Enable Interrupts (TXIM in SSIIM)
 Enable SSI
 Globally enable interupts
 enable SSI3 interrupt in the NVIC, it is interrupt number 7 so appears in EN0 at bit 7
 make sure we disable loopback mode

}

void SPI_Interupt_Response(void){\

 disable the interupt

 consecutive five reads from FIFO
 post "ES_EOT" to LOCMaster //it's a 5-byte E.O.T.

}

/******************************Other functions***************/
uint32_t QueryGameStatus(void){

 return StatusBytes, which contains SB1 to SB4
}

uint8_t QueryActiveLocation(void){

 return ActiveLocation
}

/***********************************Input Capture related to Hall Sensor******************/
void InitInputCapture_Hall(void){
 start by enabling the clock to the timer (Wide Timer 5)
 enable the clock to Port D
 // since we added this Port D clock init, we can immediately start
 // into configuring the timer, no need for further delay
 make sure that timer (Timer A) is disabled before configuring
 set it up in 32bit wide// (individual, not concatenated) mode
 the constant name derives from the 16/32 bit timer, but this is a 32/64
 bit timer so we are setting the 32bit mode
 register to 0xffff.ffff (its default value)

 set up timer A in capture mode (TAMR=3, TAAMS = 0),
 for edge time (TACMR = 1) and up-counting (TACDIR = 1)

 To set the event to rising edge, we need to modify the TAEVENT bits
 in GPTMCTL. Rising edge = 00, so we clear the TAEVENT bits

 Now Set up the port to do the capture (clock was enabled earlier)

 start by setting the alternate function for Port D bit 6 (WT5CCP0)

 map bit 6 alternate function to WT5CCP0
 // 7 is the mux value to select WT0CCP0, 16 to shift it over to the
 // right nibble for bit 6 (4 bits/nibble * 6 bits)

 Enable pin on Port D for digital I/O
 make pin 4 on Port D into an input
 back to the timer to enable a local capture interrupt
 enable the Timer A in Wide Timer 0 interrupt in the NVIC
 // it is interrupt number 104 so appears in EN3 at bit 8
 make sure interrupts are enabled globally
 now kick the timer off by enabling it and enabling the timer to
 stall while stopped by the debugger
}

void InputCaptureResponse_Hall(void){
 ES_Event EventToPost_InputCapture;

 start by clearing the source of the interrupt, the input capture event
 now grab the captured value and calculate the period
 update LastCapture to prepare for the next edge

 calculate what frequency code we have for this period we measured

 if it is the same as the previous one{
 increment stableCounter
 }
 else{
 restart the count, stableCounter
 }

 if we have read enough times of the same measurement, we know it is stable{
 update the stableMeasFreqCode with the current measFreqCode
 restart the count
 }
 //only post frequency when we have a valid and stable frequency code
 if we are in a state dealing with staging{
 //decide whether that's a code for 1st report or 2nd report
 if we have not sent the 1st report{
 raise flag indicating we have a valid frequency to process
 post "SEND_FIRST_REPORT" with the stable measured frequency code to LOCMaster
 }
 else if we have not sent the 2nd report and 1st report is ACKed{
 raise flag indicating we have a valid frequency to process
 post "SEND_SECOND_REPORT" with the stable measured frequency code to LOCMaster
 }
 }
 }
 }

 update prevMeasFreqCode

}//end input capture response

uint8_t frequency_map(uint32_t period){

 //input is in encoder ticks
 uint8_t result, assume we have no valid frequency to start with
 //the input would be in ticks, 4*10^7 ticks in one sec, period table is in micro seconds,
 //4*10^7 ticks in one sec is 4*10^7 ticks in 10^6 micro
 calculate the period in micro seconds

 loop through the frequency table to find the frequency code

 return result;
}

//--------------------functions used to interact with other modules-------------------
uint32_t queryStatusBytes(void){
 return StatusBytes;
}

uint8_t queryActiveStagingGreen(void){
 check whether the game is on or not, whether we are staging or not, and obtain the active
location from status bytes
 returns 0 for no active staging (either game has not started or in shooting), 1, 2, 3 for
1R/1G,2R/2G,3R/3G, 5 means error

 return ReturnResult;

}

uint8_t queryActiveShootingGreen(void){

 check whether the game is on or not, whether we are shooting or not, and obtain the
active location from status bytes
 returns 0 for no active staging (either game has not started or in shooting), 1, 2, 3 for
1R/1G,2R/2G,3R/3G,
 4 means all goals are open, 5 means error

 return ReturnResult;

}

uint8_t quickQueryActiveLocation(void){
 //instead of waiting for the GAME_STATUS to update,just grab it from the response
 return ActiveLocation;
}

uint8_t queryGoalGreen(void){
 return (StatusBytes & GOAL_SCORE_GREEN_MASK) >> GOAL_SCORE_GREEN_OFFSET;
}

uint8_t queryGoalRed(void){
 return StatusBytes & GOAL_SCORE_RED_MASK;
}

void check_active_event(){
 //depends on team color

 // Check Staging
 update the current active staging location

 if we have an active valid location{

 post "STAGE_ACTIVE" to MasterVehicle
 }
 update the previous active staging location

 // Check shooting
 update the current active shooting location

 if we have an active valid location{
 post "SHOOT_ACTIVE" to MasterVehicle
 }
 update the previous active shooting location
}

	

